Categorie
Nuovi prodotti
Mannaia per fibra ottica di grande diametro LDC-100 * Applicabile a fibre di diametro 80μm~600μm *Scanalatura a V della pompa del vuoto comoda per mettere la fibra *Lama durevole, durata più di 20000 volte *Archiviazione dati 4000 gruppi * Menu GUI intuitivo, facile da usare Di Più
Giuntatrice a fusione in fibra multi-core S-22 La prima giuntatrice a fusione di fibra multi - core completamente automatica in Cina Di Più
Polarizzazione di Mantenimento (PM) in Fibra di Fusion Splicer S-12 * Core a core di allineamento, bassa perdita di splicing * Endview e il Profilo di osservazione e di allineamento * Arco di calibrazione automatica e splicing * PM fibra di 45 e 90 gradi di allineamento Di Più
S-37 LDF Speialty Fiber Fusion Splicer SHINHO S-37 è l'ultimo modello che abbiamo sviluppato, potrebbe unire il diametro del rivestimento in fibra da 125 a 400 μm con una bassa perdita di giunzione. Abbiamo dotato la macchina di 3 diversi portafibra e 2 paia di elettrodi di ricambio. Di Più
splicer di fusione fibra core allineamento core x900 sei splicer di fusione per motori, vera tecnologia di allineamento core-core. 6 s splicing, 16s riscaldamento, identificare automaticamente i tipi di fibra. utilizzato per progetti wan / uomo / telecomunicazione. Di Più
robusta giuntatrice per fusione ad arco multifunzione s16 design industriale robusto, anti-shock, a prova di polvere e impermeabile. supporto multifunzione per fibra nuda, patch cord, cavo di derivazione, ecc. splicing e riscaldamento rapidi, calibrazione automatica dell'arco. Di Più
SHINHO X-18 Stripper termico in fibra di nastro Shinho X-18 Thermal Stripper è uno stripper termico manuale di nuova concezione, appositamente progettato per lo stripping termico non distruttivo della guaina di cavi a nastro fino a 12 fibre. Uno strumento buono e affidabile per il lavoro di giunzione della fibra del nastro. Di Più
Mannaia per fibre ottiche ad alta precisione X-50D Di piccole dimensioni e leggero, facile da usare. Alta precisione e prestazioni stabili. Più di 48000 volte la durata della lama, lunghezza tagliata in fibra 5 ~ 20 mm. Materiale di alta qualità Di Più
How Fiber Core & Cladding Sizes Shape High-Power Fiber-Laser Performance
In high-power fiber lasers—key in medical, industrial, and scientific applications—the design of the fiber’s core and cladding dimensions is instrumental. These structural parameters govern power handling, beam quality, efficiency, and thermal performance. Here’s how.
Increased Power Threshold & Reduced Nonlinear Effects
Enlarging the fiber core reduces optical intensity, raising the damage threshold and suppressing nonlinear effects like stimulated Brillouin and Raman scattering—crucial for power scaling. Modern lasers leverage larger cores to push into kilowatt regimes.
Trade-off: Multimode Propagation
However, bigger cores often support multiple modes, lowering beam quality. In contrast, single-mode fibers with core diameters around 8–10 µm and cladding of ~125 µm preserve clean beam profiles, albeit at restricted power capacities.
Double-Clad Fibers for Efficient Pumping
High-power lasers use double-clad fibers, where an inner cladding guides pump light (from lower-brightness sources) around a doped core. This architecture allows efficient cladding pumping, enabling high output powers while maintaining beam quality.
Cladding Shape Matters
Non-circular inner cladding shapes (e.g., offset or rectangular) enhance pump absorption by directing light more thoroughly through the core. Circular claddings tend to waste pump light by allowing many rays to bypass the core.
Cladding Size Trade-offs
A larger cladding allows coupling of more pump power, but absorption efficiency drops with the square of cladding diameter—requiring longer fibers—which can invite nonlinear effects. Designers must balance this trade-off.
Large-Mode-Area (LMA) Fibers
LMA fibers increase core diameter while maintaining single-mode operation by lowering numerical aperture or employing mode-suppressing techniques (like refractive-index engineering or coiling). This design allows high-power output with diffraction-limited beam quality.
Tapered Double-Clad Fibers (T-DCF)
T-DCF structures transition smoothly along the fiber from a narrow core to a wide multimode end. Light entering in single-mode at the narrow end remains in the fundamental mode even at the wide end, combining high-beam quality with increased power capacity.
Record-Setting Examples
Some tapered fibers feature core diameters up to 200 µm with numerical aperture ~0.11, enabling distortion-free amplification of 60 ps pulses with high peak energy.
Design Element |
Key Role & Trade-offs |
Core Size |
Larger core = higher power, reduced nonlinearity; but may degrade beam quality unless controlled. |
Cladding Size/Shape |
Critical for pump coupling efficiency and thermal load; non-circular shapes boost absorption. |
LMA Fibers |
Balance power with beam quality through mode control techniques. |
Tapered Fibers |
Achieve high power and beam fidelity in one structure—ideal for ultrafast or high-power systems. |
The delicate interplay between core and cladding dimensions—combined with smart geometric and refractive-index engineering—drives the evolution of fiber lasers. Designs like LMA and T-DCF fibers empower lasers to achieve unprecedented power while maintaining beam purity—paving the way for advanced medical devices, precision instrumentation, and beyond.
Prossimo :
Fiber laser working method© Copyright: SHINHO OPTICS LIMITED Tutti i diritti riservati.